energy and climate policy

Carbon Capture and Sequestration (CCS) from Hydrocarbon-Based Power Projects

Eric Redman, President & CEO, Summit Power Group, LLC

Monday, April 1, 2013 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Carbon capture and sequestration (CCS) on a large scale is regarded by many climate scientists as one indispensable element of any global carbon-reduction strategy. It is axiomatic that there can be no large-scale CCS project without a ‘sink’ for the carbon. The excellent work already performed on various geological sinks demonstrates that several different types of sink appear well-suited to large-scale sequestration. However, it is equally true that large-scale carbon sequestration also requires large-scale carbon capture projects. Very few exist, and almost none in the electric power sector, which is a leading source of global carbon emissions.

Seattle-based Summit Power Group is attempting to change this by developing several very large scale CCS projects in the electric power sector, both in the US (e.g., the Texas Clean Energy Project, which will capture and sequester 2.5 million tons of CO2 per year) and the UK (e.g., the Captain Clean Energy Project, which will capture and sequester more than 4 million tons of CO2 per year). Eric Redman is the president and chief executive officer of Summit, and will discuss the technical, commercial, financial, permitting, and public policy challenges of trying to be a ‘first mover’ on commercial-scale CCS projects in the power sector.

Related Themes:

Pushing the Efficiency Limits of Energy Conversion & Storage through Rational Materials Design

William Chueh, Materials Science and Engineering, Stanford University

Monday, February 4, 2013 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Taking sunlight and converting it to chemical bonds and then to electricity is one of the most promising carbon-neutral energy cycles. At the Chueh group, we are developing new materials to electrochemically convert energy between sunlight, fuel, and electricity. We take a rational approach towards materials discovery and optimization. Using powerful electron, X-ray and optical microscopy and spectroscopy techniques, we are “seeing” electrochemistry as they take place on length scales ranging from tens of microns down to below one nanometer. These never-before-seen dynamics lead to new insights into the design of functional materials with novel compositions and structures, such as those for water-splitting membranes, fuel cells, and batteries.

IMMEDIATELY AFTER THE ENERGY SEMINAR at 5:15 - 6:15 pm, GCEP invites Stanford faculty, students and staff to an informal poster session and energy social organized by GCEP students Boxiao Li and Haotian Wang in the Forbes Cafe area on the 1st floor of Huang.

Related Themes:

Hydrogen Energy in California

Mark Lerdal, Hydrogen California and MP2 Capital

Monday, November 12, 2012 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Hydrogen Energy California is a project for converting fossil fuels to hydrogen in order to generate clean power and manufacture low-carbon fertilizer products. HECA will be one of the first industrial complexes combining a large, commercial scale power plant and a low-carbon footprint fertilizer manufacturing facility, while capturing the carbon dioxide (CO2) from the fossil fuel to hydrogen conversion process. Utilizing the CO2 for fertilizer production and enhanced oil recovery increases domestic energy security, while simultaneously storing the captured CO2 permanently in the geologic formations where the oil was extracted. It is a project that offers California, the nation, and the world progress toward controlling global climate change, while providing enormous economic stimulus through construction and related jobs over the intermediate term and permanent manufacturing and related jobs over the long term.

 

Related Themes:

Financing the Next Stage of the Global Green Energy Transformation

Jochen Harnisch, KFW, Head of Division, Competence Center Environment & Climate, Frankfurt, Germany

Monday, October 15, 2012 | 04:15 AM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

The last decade experienced a remarkable expansion of the deployment of renewable energy such as wind, solar and bioenergy in several countries, including China, the United States, Germany and Spain. This was largely driven by feed-in support schemes and tax breaks, accompanied by a wider enabling framework. Open global markets and emerging new competitors have led to intense competition in local equipment markets and substantial price compression.

 

At the same time a number of equipment manufacturers went out of business. This has led to public disillusionment with the sustainability of the local employment effects of promoting renewable energy. Suspect state subsidies for some equipment manufacturers in some countries have further burdened the political climate. Additionally, renewable energy's greater share of overall supplies has led to rising electricity prices, growing budget liabilities or reduced tax revenues.

Related Themes:

A New Industrial Revolution for a Sustainable Energy Future

Arun Majumdar, former Deputy Director of LBNL and Professor at U.C.-Berkeley

Monday, October 1, 2012 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Access to affordable and reliable energy has been a cornerstone of the world’s increasing prosperity and economic growth since the beginning of the industrial revolution. Our use of energy in the twenty-first century must also be sustainable. This talk will provide a techno-economic snapshot of the current energy landscape and discuss several research and development opportunities and challenges to create the foundation for this new industrial revolution. The talk will also discuss policies to stimulate innovation and align market forces to accelerate the development and deployment of affordable, accessible and sustainable energy that can simultaneously power economic growth, increase energy security and mitigate the risks of climate change.

Related Themes:

Unlocking the Benefits of Active Customer Participation in Wholesale Electricity Markets

Frank Wolak, the Program on Energy and Sustainable Development, Stanford University

Monday, May 21, 2012 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Because electricity is a necessary input to so many economic activities, there are significant political obstacles to charging business and residential customers retail prices that reflect the hourly wholesale price of electricity. A long history of retail electricity prices that do not vary with real-time system conditions makes this task even more difficult. Finally, the lack of interval meters on the customer’s premises makes it impossible to determine precisely how much energy each customer withdraws in a given hour.

Recently a number of jurisdictions in the U.S. have installed the interval meters necessary for customers to participate actively in the wholesale market. This talk will summarize the results of a number of research projects at the Program on Energy and Sustainable Development for allowing electricity consumers to benefit from active participation in wholesale electricity markets. The results of dynamic pricing and information provision experiments will be summarized, and current and future directions for research at the Program on Energy and Sustainable Development will be described.  Necessary changes in state-level regulatory policies that can also unlock the economic benefits of modern technologies for active participation of final consumers will also be discussed.

Related Themes:

The Energy Balance of the Photovoltaic Industry: Is the PV Industry a Net Energy Provider?

Michael Dale, Global Climate & Energy Project, Stanford University

Monday, April 2, 2012 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

A combination of policy measures and reduced costs have driven a rapid growth in global installed capacity of solar photovoltaics. This rapid growth has prompted concerns over the net energy yield of PV energy production. Mik will analyze the energy balance of the PV industry given historic and projected growth in capacity. Results suggest that, despite the large amount of energy required to manufacture and install PV systems, there is a high likelihood (greater than 80%) that the industry became a net provider of electricity between 2009 and today. If current trends continue, the industry will almost certainly be a net electricity producer by 2015 and will have ‘paid back’ the energy subsidy required for its early growth by the end of this decade. This analysis raises a number of implications for PV research, development and deployment including: further reducing the energy embodied within PV systems, including balance of system components; designing more efficient and durable systems; and deployment in regions that will achieve high capacity factors.

Related Themes:

Screening and Discussion of "Beyond the Light Switch"

Panel: Ed Moore, Detroit Public Television; David Biello, Scientific American; Sally Benson, Department of Energy Resources Engineering, Stanford University; Mark Zoback, Department of Geophysics, Stanford University
Moderator: Paul Rogers, KQED News

Monday, March 12, 2012 | 04:15 PM - 06:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Ed Moore David Biello Paul Rogers Mark Zoback Sally Benson

"Beyond the Light Switch" takes viewers on an enlightening and comprehensive journey into the inner workings of the electrical power infrastructure, from a first-of-its-kind coal plant in West Virginia to natural gas wells in Pennsylvania, from the inside of a nuclear reactor under construction in Tennessee to wind farms  in Oregon. The documentary, which was directed and co-written by Ed Moore, won a 2011 Alfred I. DuPont-Columbia University Award, the highest honor in broadcast journalism. The two-hour show, of which an abbreviated version will be screened, illustrates how a new paradigm is rapidly evolving for electric power generation.

What is this new paradigm? By 2050, the United States must replace most of its electric power generation fleet, cut carbon dioxide emissions by 80% and completely update its power grid. All of this must happen while demand for electricity is expected to rise 30%.

Related Themes:

Fossil Fuel Independence for Denmark: Why, When and How?

Katherine Richardson, University of Copenhagen 

Monday, March 5, 2012 | 12:15 PM - 01:30 PM | Mackenzie Room, Huang Engineering Center | Free and Open to All

For the first time in history, the human demand for a number of critical natural resources is approaching or exceeding the global supply of these resources. Sustainable development requires that the demand for resources be brought into, and maintained within, the limit of supply. This means that the only possible growth paradigm for society demands that we use our natural resources much more efficiently and, when possible, develop alternatives for resources where demand approaches supply. While this paradigm applies to a number of natural resources, it is most obviously playing out with respect to energy. Here, two resources are challenged by demand at the global level: fossil fuels (especially oil) and our common atmospheric garbage dump for greenhouse gas waste.

This is leading a number of countries – especially those where energy security in the short-term is potentially threatened – to invest in or plan alternative energy systems. Denmark has set an absolute date of 2050 for removing fossil fuels from its energy system,  the first country in the world to take such action. This talk will describe the Danish plan, how it was developed, the strategy for achieving fossil fuel independence and the status of the transition.

Related Themes:

Integrated Energy and Resource Recovery from Waste and Wastewater

Craig Criddle, Department of Civil and Environmental Engineering, Stanford University

Richard G.Luthy, Department of Civil and Environmental Engineering, Stanford University

Monday, February 13, 2012 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

 

 

 

 

 


Craig Criddle

 


Richard Luthy

       

By the end of the 20th century, the United States had about 15,000 wastewater treatment plants and 13,000 landfills. These systems were designed to prevent environmental harm and to protect public health. Other factors, such as energy costs and climate change, were not a consideration. Waste and wastewater were collected, transported to centralized facilities, treated to remove harmful agents, and the effluents and residuals discharged. Now these systems have reached their design life and are in need of revitalization. Energy costs, climate change, and demand for secure supplies of water, food and materials provide powerful incentives for technological innovation through the creation of circular markets. In such markets, wastewater becomes a resource for local production of freshwater and nutrients, and organic waste becomes feedstock for local production of energy and biomaterials. Many groups around the world are now developing technology to enable such innovation.

 

Related Themes:
Syndicate content