Wind Uncertainty in Electricity Markets: Practical Challenges

Mar Reguant, Assistant Professor, Economics, Stanford Graduate School of Business

Monday, April 13, 2015 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Integrating large quantities of wind and solar energy is often considered a challenge due to the intermittent nature of renewable generation. I present evidence on the costs and benefits of renewable power based on data from the Iberian Electricity market, which as of 2012 produces over 20% of its electricity from wind power, and about 5% of its electricity with solar power. I examine the challenges of wind and solar integration from an empirical perspective, and quantify the relative impacts of uncertainty and volatility on realized electricity costs. I also show how market incentives can distort optimal planning, by examining wind farm behavior in centralized electricity auctions. Allowing wind farms to participate in centralized markets can increase competition and decrease procurement costs, but it might increase inefficiencies in the market.



Related Themes:

Commercializing Wind, Photovoltaics, Lighting, and Batteries: The Impact of Government Policies During the Past 25 Years

Cathy Zoi, Consulting Professor at Stanford University

Monday, March 3, 2014 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

On March 10th, Cathy Zoi will present the findings from Energy 158, a research seminar held during the Fall of 2013, that investigated the progress of wind, photovoltaics, lighting and batteries over the past 30 years, and the impact that government intervention had on this progress. She will then apply these lessons from history to propose a framework policy makers can use in the future.

Rationale for the research: Public policy imperatives have created a drive for energy technologies that can reduce greenhouse gas emissions, improve national security, and boost domestic economic activity. To accelerate the development and commercialization of these new technologies beyond what the market would deliver on its own, governments frequently use policies like direct R&D funding, financial incentives or penalties (e.g. through the tax code, state funds, or utility rates), mandatory targets or caps, information disclosure, and performance codes and standards to create market conditions that favor emerging technologies. There is significant public debate about the most effective mix of these policy interventions.


Related Themes:

Grid Flexibility and Research Challenges to Enhance the Integration of Variable Renewable Energy Sources

Mark O'Malley, Electrical Engineering Dept., University College Dublin

Monday, January 14, 2013 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Grid flexibility is a characteristic that is proposed to help the integration of variable renewable energy resources. However it has proven very difficult to quantify and this has spurred intense research efforts over the past few years. There are many sources, sinks and enablers for flexibility in the grid and these are all subject to numerous research challenges. Flexibility will be introduced, defined and a number of methods to quantify it will be described. This will be followed by an overview of research into unlocking flexibility in the power system e.g. demand side participation and power system operational strategies. There are potential hidden costs of flexibility and some of these will be highlighted, for example thermal plant cycling, and mitigation measures to reduce these will be formulated. Concluding remarks will try to give insights into how a future grid with very high penetrations of variable renewable energy may look like.

Related Themes:

Renewable Electricity Futures

Doug Arent, Executive Director, Joint Institute for Strategic Energy Analysis at NREL

Monday, November 26, 2012 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

The Renewable Electricity Futures Study is  an initial investigation of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States over the next several decades. This study explores the implications and challenges of very high renewable electricity generation levels--from 30% up to 90%, focusing on 80%, of all U.S. electricity generation from renewable technologies--in 2050.

At such high levels of renewable electricity penetration, the unique characteristics of some renewable resources, specifically geographical distribution and variability and uncertainty in output, pose challenges to the operability of the nation's electric system. The study focuses on key technical implications of this environment from a national perspective, exploring whether the U.S. power system can supply electricity to meet customer demand on an hourly basis with high levels of renewable electricity, including variable wind and solar generation. The study also identifies some of the potential economic, environmental, and social implications of deploying and integrating high levels of renewable electricity in the United States.

Related Themes:

Combining Offshore Wind and Wave Energy Farms to Facilitate Grid Integration of Variable Renewables

Eric Stoutenburg, Ph.D. candidate, Civil and Environmental Engineering Department, Stanford University

Monday, April 23, 2012 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

The ocean covers 71% of the Earth's surface. It is abundant in renewable energy resources such as wind, wave, tidal, and gradients of salinity and temperature. With the exception of some offshore wind farms along the northern European coast, this vast reservoir of non-fossil fuel energy is untapped, even though roughly 40% of the world's population lives within 100 kilometers of the coast. With continued development of offshore wind power in Europe and initial projects planned for the US east coast, China, and Korea, larger contributions of offshore wind power are on the horizon. Similarly, several wave energy converters are in full scale prototype testing at sea.

Development of both renewable energy sources in co-located sites may improve the electric power performance of a combined wind and wave energy farm. While wave energy is primarily a wind driven phenomenon, at a particular location and time, the energy levels in the wind and waves may be different. Analysis of wind and wave data along the US Pacific coast indicates a synergy where combining the two energy sources in a co-located offshore farm reduces the variability in electric power output. The variability of electric power from renewable energy sources has been identified as a challenge to their large scale integration in the electric grid, but combining variable resources mitigates this problem, producing smoother power output than either resource can separately.

Related Themes:

Fossil Fuel Independence for Denmark: Why, When and How?

Katherine Richardson, University of Copenhagen 

Monday, March 5, 2012 | 12:15 PM - 01:30 PM | Mackenzie Room, Huang Engineering Center | Free and Open to All

For the first time in history, the human demand for a number of critical natural resources is approaching or exceeding the global supply of these resources. Sustainable development requires that the demand for resources be brought into, and maintained within, the limit of supply. This means that the only possible growth paradigm for society demands that we use our natural resources much more efficiently and, when possible, develop alternatives for resources where demand approaches supply. While this paradigm applies to a number of natural resources, it is most obviously playing out with respect to energy. Here, two resources are challenged by demand at the global level: fossil fuels (especially oil) and our common atmospheric garbage dump for greenhouse gas waste.

This is leading a number of countries – especially those where energy security in the short-term is potentially threatened – to invest in or plan alternative energy systems. Denmark has set an absolute date of 2050 for removing fossil fuels from its energy system,  the first country in the world to take such action. This talk will describe the Danish plan, how it was developed, the strategy for achieving fossil fuel independence and the status of the transition.

Related Themes:

A Smarter Grid and High Penetration Renewables

Juan de Bedout, Ph.D., Global Technology Director, Electrical Technologies and Systems, GE Global Research

GCEP Distinguished Lecturer

Monday, April 25, 2011 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

The last several years have seen a flurry of activity in industry and academia in the Smart Grid space.  The need for a smarter electrical grid in North America stems from emerging challenges in congestion, reliability, safety and renewable energy integration, that may be more cost effectively resolved with advanced controls technology than with bulk infrastructure growth.  Solutions to these problems require system thinking; many technologies need to work together to collectively provide relief.  It is important to note that the problems change dramatically as you migrate to different parts of the world, with every region having unique challenges and opportunities.  This talk will focus on Smart Grid technologies for mature grids such as the one in North America, and will pay special attention to the integration of renewable energy resources.  A brief discussion of the grid in India will be provided for contrast.

Related Themes:

How the West Can Accommodate High Penetrations of Wind and Solar Power

Debra Lew, National Renewable Energy Laboratory

Wednesday, November 3, 2010 | 04:15 PM - 05:15 PM | Building 420, Room 40 | Free and Open to All

What happens when you put lots of wind and solar power onto the power system? Do you need more storage? Do you need more reserves? When does the system 'break'? What actions can be taken to integrate wind and solar power into the power system without large cost increases to consumers?


Wind and solar power are inherently variable and uncertain. This causes difficulties for power system operators who must maintain reliability. Over the past several years, utilities and researchers have simulated power system operation with various penetration levels of renewable energy, examining increased costs due to integration of the renewables and mitigation measures to more cost-effectively accommodating the renewables. Debbie will present an overview of recent renewable energy integration studies in the US and Europe. She will focus on the recently released Western Wind and Solar Integration Study, one of the largest wind and solar integration studies to date, that examines the integration of up to 35% wind and solar energy into the power system. Issues addressed include: utility cooperation, tradeoffs between local and remote renewable energy resources, geographic diversity, storage, reserves, and improved forecasting.


followed by a MAP Energy Social (details announced at the seminar)

Related Themes:

Precourt Institute for Energy at Stanford: The Grand Challenge

Lynn Orr, Keleen and Carlton Beal Professor in Petroleum Engineering, Energy Resources Engineering Department Director, Precourt Institute for Energy



Wednesday, October 6, 2010 | 04:15 PM - 05:15 PM | Building 420, Room 40 | Free and Open to All

Franklin M. ("Lynn") Orr, Jr. became the director of the Precourt Institute for Energy at Stanford upon its establishment in 2009. He served as director of the Global Climate and Energy Project from 2002 to 2008. Orr was the Chester Naramore Dean of the School of Earth Sciences at Stanford University from 1994 to 2002. He has been a member of the Stanford faculty since 1985 and holds the Keleen and Carlton Beal Chair of Petroleum Engineering in the Department of Energy Resources Engineering, and is a Senior Fellow at the Woods Institute for the Environment. His research activities focus on how complex fluid mixtures flow in the porous rocks in the Earth's crust, the design of gas injection processes for enhanced oil recovery, and CO2 storage in subsurface formations. Orr is a member of the National Academy of Engineering. He serves as vice chair of the board of directors of the Monterey Bay Aquarium Research Institute, and he chairs the Science Advisory Committee for the David and Lucile Packard Foundation and was a foundation board member from 1999-2008.

Related Themes:

Integrating More Than 50% Wind on the Grid: A Case Study

Marija Ilić, Carnegie Mellon University

Wednesday, February 3, 2010 | 04:15 PM - 05:15 PM | Building 420, Room 40 | Free and Open to All

In this lecture we pose the problem of sustainable electricity services as a novel systems engineering design problem. We briefly summarize today's operating and planning practices and explain why these need fundamental changing in order to enable qualitatively different electricity services. In particular, we suggest that many new resources have characteristics, which are not generally known to the system operators, and are, therefore, currently not relied on for managing supply and demand in an often-congested electric network. The new resources are also highly variable and, as such, do not lend themselves to static feed-forward scheduling without near-real time automated feedback. Instead, a transformation of this operating and planning mode into an interactive multi-temporal, multi-spatial and multi-contextual system management is needed to accommodate ever-changing system conditions, often driven by many distributed actions. In order to enable a complex system with often-conflicting functionalities, such as reliability, security, short- and long-term efficiency, and sustainability, one must rely on prediction, adaptation and adjustments by all.
Related Themes:
Syndicate content