climate change

Special panel talk with students

Gro Brundtland, Board of Directors, United Nations Foundation; Former Prime Minister of Norway

Monday, April 14, 2014 | 04:15 PM - 05:14 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

This Energy Seminar will feature a student-led discussion with Dr. Gro Brundtland on the challenges in climate and energy --an area she has been a global leader.

**Come join us for the Precourt Institute for Energy social following this talk. NVIDIA Foyer, 5:15-6:15 (open to Stanford faculty, staff, and students. Editors of the Stanford Energy Journal will be present to discuss their latest sustainability transportation issue.

Related Themes:

A review of environmental impacts of renewable electricity generation technologies from a life cycle perspective

Garvin Heath, Senior Scientist, National Renewable Energy Laboratory (NREL)

Monday, November 4, 2013 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Through systematic reviews and original research, this presentation will review evidence of environmental impacts of renewable electricity generation technologies compared, where possible, to their conventional incumbents. Evidence for greenhouse gas emissions, water and land use will be reviewed mostly from the perspective of life cycle assessment. Areas of uncertainty will be highlighted as suggestions for future research.


Related Themes:

Panel, Ethics in an Energy Crisis: What Should We Do When Current Needs Conflict with Long-Term Sustainability?

Mark Bryant Budolfson, Blake Francis, Hyunseop Kim, Stanford University

Introduction by Debra Satz, Professor of Ethics in Society, Senior Associate Dean for the Humanities and Arts

Monday, October 21, 2013 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Mark Budolfson Blake Francis Hyunseop Kim Debra Satz

Ethics are important. The economic divide between the developed and developing world highlights the ethical dimensions of energy access in a climate-constrained world. Is it fair to hinder economic growth in developing countries because the wealthiest nations have changed the composition of the atmosphere and changed the climate of the planet? To what extent do the developed nations bear responsibility for not only remedying the problem, but also for compensating those people who are now suffering because of climate climate, or who could face tight emissions restrictions? As the economic balance of the world changes, what role should rapidly developing nations share in the responsibility to address these issues?

Here, we examine these issues through the lens of one country, Pakistan, which is struggling with a severe energy crisis that is holding back economic development and exacerbating political instability. Ethicists, economists, and others have developed a set of useful tools for deciding what to do when economic, environmental, and social values conflict. We will explain how some of these tools–including cost benefit analysis, the precautionary principle, and principles of justice–can help us evaluate aspects of the recent energy crisis in Pakistan, in which many competing values are at play. After months of rolling blackouts and documented impacts to economic growth, the Pakistani government decided to meet the current needs of their citizens by investing in coal and other fossil fuel technologies, rather than alternative sources of energy that many would argue are superior from the perspective of long-run sustainability. We use this example to illustrate how different general ethical theories use the tools we discuss to recommend different courses of action. One upshot is that ethics has many sophisticated tools but also involves many important unresolved questions–about how to make tradeoffs between different values, how to respond to risk and uncertainty, and so on. Another upshot is that ethics alone cannot settle what should be done in such complex situations–collaboration is also needed with those who have technical, political, and economic expertise. However, ethics can help clarify our reasoning, make our assumptions about values more explicit, and expose our values to critical scrutiny. In sum, we demonstrate the valuable role ethics can play when making decisions in the face of social and environmental challenges.

Related Themes:

Coping with the Scientific, Technological and Economic Uncertainties of Climate Change

Charles Kolstad, Stanford Institute for Economic Policy Research and the Precourt Institute for Energy, Stanford University

Monday, April 8, 2013 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

The threat of climate change has profound implications for the evolution of the world’s energy system over the coming decades. More than many environmental problems, uncertainty is a central characteristic of the problem – uncertainty regarding the physical science of climate but also uncertainty regarding the impacts, technologies (for mitigation, adaptation and geoengineering), costs, and human preferences.

The problem is larger than simple uncertainty. Some uncertainty is objective and fits into a probabilistic paradigm; other uncertainty is much more vague, with unknown probabilities (such as the likelihood of inventing a cheap way of storing electricity by 2020). Furthermore, uncertainty changes over time, either simply by acquiring more experience or through proactive measures to increase knowledge (eg, R&D). And further, some uncertainty is managed automatically by individuals and organizations seeking to reduce risk exposure (eg, with flood insurance). The bottom line is how to manage the risks of climate change in this complex and evolving environment? Insurance, financial markets, individual action and public policy can and should work in tandem to deal with this uncertainty. This talk provides a perspective on managing risk associated with climate change.

Related Themes:

Carbon Capture and Sequestration (CCS) from Hydrocarbon-Based Power Projects

Eric Redman, President & CEO, Summit Power Group, LLC

Monday, April 1, 2013 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Carbon capture and sequestration (CCS) on a large scale is regarded by many climate scientists as one indispensable element of any global carbon-reduction strategy. It is axiomatic that there can be no large-scale CCS project without a ‘sink’ for the carbon. The excellent work already performed on various geological sinks demonstrates that several different types of sink appear well-suited to large-scale sequestration. However, it is equally true that large-scale carbon sequestration also requires large-scale carbon capture projects. Very few exist, and almost none in the electric power sector, which is a leading source of global carbon emissions.

Seattle-based Summit Power Group is attempting to change this by developing several very large scale CCS projects in the electric power sector, both in the US (e.g., the Texas Clean Energy Project, which will capture and sequester 2.5 million tons of CO2 per year) and the UK (e.g., the Captain Clean Energy Project, which will capture and sequester more than 4 million tons of CO2 per year). Eric Redman is the president and chief executive officer of Summit, and will discuss the technical, commercial, financial, permitting, and public policy challenges of trying to be a ‘first mover’ on commercial-scale CCS projects in the power sector.

Related Themes:

Grid Flexibility and Research Challenges to Enhance the Integration of Variable Renewable Energy Sources

Mark O'Malley, Electrical Engineering Dept., University College Dublin

Monday, January 14, 2013 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Grid flexibility is a characteristic that is proposed to help the integration of variable renewable energy resources. However it has proven very difficult to quantify and this has spurred intense research efforts over the past few years. There are many sources, sinks and enablers for flexibility in the grid and these are all subject to numerous research challenges. Flexibility will be introduced, defined and a number of methods to quantify it will be described. This will be followed by an overview of research into unlocking flexibility in the power system e.g. demand side participation and power system operational strategies. There are potential hidden costs of flexibility and some of these will be highlighted, for example thermal plant cycling, and mitigation measures to reduce these will be formulated. Concluding remarks will try to give insights into how a future grid with very high penetrations of variable renewable energy may look like.

Related Themes:

Hydrogen Energy in California

Mark Lerdal, Hydrogen California and MP2 Capital

Monday, November 12, 2012 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Hydrogen Energy California is a project for converting fossil fuels to hydrogen in order to generate clean power and manufacture low-carbon fertilizer products. HECA will be one of the first industrial complexes combining a large, commercial scale power plant and a low-carbon footprint fertilizer manufacturing facility, while capturing the carbon dioxide (CO2) from the fossil fuel to hydrogen conversion process. Utilizing the CO2 for fertilizer production and enhanced oil recovery increases domestic energy security, while simultaneously storing the captured CO2 permanently in the geologic formations where the oil was extracted. It is a project that offers California, the nation, and the world progress toward controlling global climate change, while providing enormous economic stimulus through construction and related jobs over the intermediate term and permanent manufacturing and related jobs over the long term.


Related Themes:

Stanford Energy Systems Innovations project

Jack Cleary, Lands, Buildings & Real Estate; Chris Edwards, Mechanical Engineering; Laura Goldstein, Department of Project Management; Lynn Orr, Energy Resources Engineering, Precourt Institute for Energy; Bob Reidy, Lands, Buildings & Real Estate; Joe Stagner, Office of Sustainability & Energy Management; Jim Sweeney, Management Science & Engineering, Precourt Energy Efficiency Center; and John Weyant, Management Science & Engineering, Energy Modeling Forum

Monday, October 29, 2012 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Chris Edwards Lynn Orr Bob Reidy
Joe Stagner Jim Sweeney John Weyant

Representatives from Stanford's office of Land, Buildings & Real Estate will introduce the project and provide an overview, followed by a panel discussion with professors Chris Edwards, Lynn Orr, Jim Sweeney and John Weyant.

Related Themes:

Screening of "Switch," followed by a discussion with the film's producer Scott Tinker, and Stanford University professors Sally Benson, Margot Gerritsen, and Mark Jacobson

Scott W. Tinker, Bureau of Economic Geology, the State Geologist of Texas
Moderator: Sally Benson, Energy Resources Engineering, Stanford, with Margot Gerritsen, Energy Resources Engineering, Stanford; Mark Jacobson, Civil and Environmental Engineering, Stanford

Monday, October 8, 2012 | 04:15 PM - 06:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

What does the future of energy really hold? Join Scott Tinker on a spectacular global adventure to find out. Scott explores the world’s leading energy sites, from coal to solar, from oil to biofuels. Many of these sites are highly restricted and never before seen on film. Scott gets straight answers from the people driving energy today, international leaders of government, industry and academia. In the end, he cuts through the confusion to discover a path to our future that is surprising and remarkably pragmatic.

"Switch" is a balanced documentary, embraced and supported by people all along the energy spectrum – fossil and renewable, academic and environmental.

Related Themes:

A New Industrial Revolution for a Sustainable Energy Future

Arun Majumdar, former Deputy Director of LBNL and Professor at U.C.-Berkeley

Monday, October 1, 2012 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Access to affordable and reliable energy has been a cornerstone of the world’s increasing prosperity and economic growth since the beginning of the industrial revolution. Our use of energy in the twenty-first century must also be sustainable. This talk will provide a techno-economic snapshot of the current energy landscape and discuss several research and development opportunities and challenges to create the foundation for this new industrial revolution. The talk will also discuss policies to stimulate innovation and align market forces to accelerate the development and deployment of affordable, accessible and sustainable energy that can simultaneously power economic growth, increase energy security and mitigate the risks of climate change.

Related Themes:
Syndicate content