renewable energy

Can Fusion Step Up? Encouraging Developments in Laser Fusion Research and Prospects for a Future Energy Source

 Siegfried Glenzer, Distinguished Staff Scientist, SLAC National Accelerator Laboratory

Monday, May 19, 2014 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

One of the great challenges of this century is to determine if nuclear fusion of hydrogen isotopes can be demonstrated in the laboratory and developed into an unlimited carbon-free energy source. Recently, experiments on laser-driven targets have begun on the National Ignition Facility to reach temperatures and densities more extreme than the center of the sun. These studies have the goal to demonstrate a burning plasma state with significant fusion energy gain. In this talk, I will present a new high-energy-density science program at SLAC aimed at pursuing discovery-class science of fusion plasmas. Here, we use the seeded LCLS beam with x-ray pulses with the highest peak brightness available today. This capability allows us to measure plasmons and physical material properties in dynamic experiments. Our data allow direct determination of pressure for validating theoretical models of the most extreme states of matter. I will show how LCLS data relate back to the design of ignition fusion experiments and will discuss prospects for near-term progress and fusion energy gain in the future.

Related Themes:

The Rapidly Changing Economics of Solar PV Power, Solar Mini-Series (1 of 2)

Anshuman Sahoo, Ph.D. Candidate, Department of Management Science & Engineering at Stanford

Monday, February 24, 2014 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

This talk examines the economics of solar photovoltaic power both from the perspective of investors in solar installations and from the perspective of solar panel manufacturers. For investors, the key consideration is the cost competitiveness of solar PV relative to other electricity sources. The model calculations I present focus on commercial – and utility scale installations, highlighting the importance of geographic location and the role of federal tax subsidies.

To project the economics of solar PV in coming years, I will summarize some recent work that examines changes in the manufacturing costs of solar panel manufacturers. These findings suggest that the dramatic reductions in module prices over the past few years are partly attributable to cost reductions, but also to massive additions of manufacturing capacity that arguably left the industry with excess capacity. The talk will present a methodology for quantifying the magnitude of these two effects in order to make predictions about the future price trajectory of solar panels and, by implication, the competitiveness of solar power.

 

Related Themes:

Energy Policy (and Politics) in Theory and Practice: A Case Study in Renewable Energy Finance

Dan Reicher, Executive Director of the Steyer Taylor Center for Energy Policy and Finance

Felix Mormann, Faculty Fellow, Stanford University's Steyer–Taylor Center for Energy Policy and Finance,

Monday, January 13, 2014 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Dan Reicher Felix Mormann

Since 2012, we have been exploring the potential of master limited partnerships (MLPs) and real estate investment trusts (REITs) to spur the deployment of renewable energy. Technological innovation continues to bring down the cost of solar panels, wind turbines, and other equipment but financial innovation is lagging. As a result, financing charges may drive up a renewable power project's levelized cost of electricity by up to 50%. Our analysis suggests that MLPs and REITs have the potential to significantly reduce the cost of capital for renewable energy. But even the smartest policy proposal does not earn legislative approval easily, as illustrated by the MLP Parity Act which enjoys strong support on both sides of the aisle but still faces a tricky road in Washington. It takes time, ingenuity, and political savvy to build necessary support in the industry, on Wall Street, and on Capitol Hill for even a well supported idea like this. We will present the results of our analytical work as well as insights from our advisory participation in the ongoing political process.

 

Related Themes:

A review of environmental impacts of renewable electricity generation technologies from a life cycle perspective

Garvin Heath, Senior Scientist, National Renewable Energy Laboratory (NREL)

Monday, November 4, 2013 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Through systematic reviews and original research, this presentation will review evidence of environmental impacts of renewable electricity generation technologies compared, where possible, to their conventional incumbents. Evidence for greenhouse gas emissions, water and land use will be reviewed mostly from the perspective of life cycle assessment. Areas of uncertainty will be highlighted as suggestions for future research.

 

Related Themes:

BETTER BURNING: China's Attempt at Clean Coal

Shisen Xu, President, Clean Energy Research Institute at China Huaneng Group; moderated by Jeffrey Ball, Steyer-Taylor Center for Energy Policy and Finance, Stanford University

Monday, October 7, 2013 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

China consumes nearly as much coal as the rest of the world combined, and is leading the world in greenhouse gas emissions. Now, even as China builds more coal-fired power plants, it is working to roll out technologies to burn that coal more cleanly — from anti-smog filters to systems to capture carbon dioxide and shoot it underground. China has launched the world’s largest “clean coal” experiment. During this talk, the top technology officer from China’s largest power company will assess the state of cleaner coal-burning technology and its prospects for real-world rollout in China and around the globe. Shisen Xu is President of the Clean Energy Research Institute at China Huaneng Group, one of China’s largest state-owned electric utilities. 

Related Themes:

Energy in Nanoelectronics and Nanomaterials

 Eric Pop, Associate Professor, Electrical Engineering, Stanford University

Monday, September 23, 2013 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center |

Energy use and conversion are important for the design of low-power electronics and energy-conversion systems. This is also a rich domain for both fundamental discoveries as well as technological advances. This talk will present recent highlights from our studies at the intersection of energy, nanomaterials, and nanoelectronics. We have investigated thermoelectric effects in graphene transistors and carbon nanotube composites, for both low-power electronics and energy harvesting. We have also examined energy-efficient data storage based on phase change (rather than charge or spin), achieving operation at femtojoules per bit, two orders of magnitude below industry state-of-the-art. The results suggest new directions to improve energy efficiency towards fundamental limits, through the design of geometry and materials.

Related Themes:

Stanford Solar Decathlon: Start.Home

Stanford Solar Decathlon team

Monday, June 3, 2013 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Derek Ouyang Rob Best Felipe Pincheira Collin  Lee

Start.Home is Stanford's first entry into the U.S. Department of Energy Solar Decathlon competition (http://www.solardecathlon.gov). This biannual competition challenges 20 teams to design and build netzero, solarpowered homes that are judged on 10 different contests, from affordability to engineering.

While modern green homes often boast adaptive systems that reduce energy use behind the
scenes, our philosophy is that technology alone cannot solve the global energy problem. Equally important is awareness of how each of our daily choices affect our environmental footprints. Only through a combination of a passive home and an active mind can we achieve a lifestyle that is truly sustainable.

Stanford Solar Decathlon is a team of committed engineers and entrepreneurs seeking to design
a home that not only excels at the competition, but also has the potential to become an effective
business model in the future. To this end, we are developing a “Start.Home” concept that will provide sustainability at the push of a button to a new generation of environmentally conscious homeowners. The design will emphasize innovation in the constructability of modular architecture and advancements in controls for an intuitive building management core. Every component of the home will be optimized for customizability, affordability, and life cycle value. As a marketable brand, Start.Home will reflect the spirit of Stanford students to challenge preconceived notions of “green” and start a new movement in sustainable living.

Four student leaders from the team will present the unique Start.Home design vision, share their
experiences designing and building the netzero home, and emphasize the importance of projectbased, interdisciplinary learning. After the presentation, the audience is encouraged to join the team on a short 5 minute walk over to the construction site located by Terman Park and tour the Start.Home. For more information, please visit http://solardecathlon.stanford.edu

Related Themes:

China Miniseries (5 of 5): Beijing's Bets—Planning China's Energy Future

Zhongying Wang, Deputy Director General, Energy Research Institute, China National Development & Reform Commission

Monday, May 20, 2013 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

More than any other country, China sets an energy strategy and then pursues it. The central government writes those plans. To try to feed the energy appetite of China’s 1.35 billion people, Beijing’s energy planners have laid out an all-of-the-above agenda: more coal, more natural gas, more nuclear, more energy efficiency and more renewable power. How their agenda fares will shape political stability in China — and energy markets and the environment around the world. What’s their plan? Does what they write in Beijing really dictate what happens on the ground? What developments do they find most promising? And what roadblocks — technologically, politically, economically — do they see as the biggest threats? In this final session of the China energy series, a top official at the Chinese government’s energy-research arm will offer a frank look ahead at his country’s energy challenges and options.

Related Themes:

Entrepreneurship Mini-Series, part II: Recent Stanford Graduates in Energy Start-Ups

Max Kelman, Manager of Materials & Print Development at Innovalight, Inc./DuPont; Jacob Woodruff, Senior Scientist at SunPower Corporation

Monday, March 11, 2013 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Maxim Kelman and Jacob Woodruff are relatively recent Stanford graduates in physical science and engineering who have worked successfully in solar energy-related start-ups. Kelman and Woodruff will describe the evolution of their careers to date, lessons learned about the start-up world and how it differs from academic and larger corporate workplaces. This will include the implementation of research findings into pilot and manufacturing lines with accelerated development timelines, and what it is like to work in the early stages versus later stages after reorganization and introduction of new management. Personality traits that may be useful among start-up employees will also be discussed.

Related Themes:

Pushing the Efficiency Limits of Energy Conversion & Storage through Rational Materials Design

William Chueh, Materials Science and Engineering, Stanford University

Monday, February 4, 2013 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Taking sunlight and converting it to chemical bonds and then to electricity is one of the most promising carbon-neutral energy cycles. At the Chueh group, we are developing new materials to electrochemically convert energy between sunlight, fuel, and electricity. We take a rational approach towards materials discovery and optimization. Using powerful electron, X-ray and optical microscopy and spectroscopy techniques, we are “seeing” electrochemistry as they take place on length scales ranging from tens of microns down to below one nanometer. These never-before-seen dynamics lead to new insights into the design of functional materials with novel compositions and structures, such as those for water-splitting membranes, fuel cells, and batteries.

IMMEDIATELY AFTER THE ENERGY SEMINAR at 5:15 - 6:15 pm, GCEP invites Stanford faculty, students and staff to an informal poster session and energy social organized by GCEP students Boxiao Li and Haotian Wang in the Forbes Cafe area on the 1st floor of Huang.

Related Themes:
Syndicate content