Special panel talk with students

Gro Brundtland, Board of Directors, United Nations Foundation; Former Prime Minister of Norway

Monday, April 14, 2014 | 04:15 PM - 05:14 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

This Energy Seminar will feature a student-led discussion with Dr. Gro Brundtland on the challenges in climate and energy --an area she has been a global leader.

**Come join us for the Precourt Institute for Energy social following this talk. NVIDIA Foyer, 5:15-6:15 (open to Stanford faculty, staff, and students. Editors of the Stanford Energy Journal will be present to discuss their latest sustainability transportation issue.

Related Themes:

Saving Time and Energy through Bus-Rapid-Transit Projects Around the World

Sharareh Tavafrashti, Principal Engineer, San Francisco County Transportation Authority

Elkin Bello, Program Manager, Institute for Transportation and Development Policy 

Monday, April 7, 2014 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Shari Tavafrashti Elkin Bello

As the cost of providing space and energy for personal transportation options have increased both on the capital side as well as its energy footprint and consequences, mass transportation is gaining priority for developing and developed countries. In this presentation, we will provide a few examples of the successful and not so successful implementations for the bus rapid transit system around the world. The lecture will compare key features of various BRT projects around the world and attempt to address their impact on sustainable development and transportation solutions in each environment.

Related Themes:

Solid State Energy Storage: Game-Changing Technology for the 21st Century

Ann Marie Sastry, President and CEO, Sakti3, Inc.

Monday, March 31, 2014 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Critical, imminent changes in the world energy portfolio have amplified pressure on development of advanced energy storage technology, for the grid, automotive and consumer electronics sectors. Technology advances are not only required to enable the largest entry of people to the middle classes in human history, but also to avert disastrous consequences of irrevocable climate change and environmental harm. Present lithium-ion batteries, with a total addressable market of over $12 billion, expected to grow to over $23 billion in the next four years, cannot meet these burgeoning needs, for reasons of cost, performance and safety.

Present manufacturers of the incumbent technology all employ liquid electrolytes and lamination processing in highly conserved plant designs, producing cells that are not differentiated in cost, performance or safety. Additionally, lamination processing of lithium-ion batteries has enormous built in costs, including up to two months’ of careful, pre-processing time for cells before they can be shipped to customers, comprising tremendous work-in-process and additional, unremovable process cost and time.

Related Themes:

Coping with the Scientific, Technological and Economic Uncertainties of Climate Change

Charles Kolstad, Stanford Institute for Economic Policy Research and the Precourt Institute for Energy, Stanford University

Monday, April 8, 2013 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

The threat of climate change has profound implications for the evolution of the world’s energy system over the coming decades. More than many environmental problems, uncertainty is a central characteristic of the problem – uncertainty regarding the physical science of climate but also uncertainty regarding the impacts, technologies (for mitigation, adaptation and geoengineering), costs, and human preferences.

The problem is larger than simple uncertainty. Some uncertainty is objective and fits into a probabilistic paradigm; other uncertainty is much more vague, with unknown probabilities (such as the likelihood of inventing a cheap way of storing electricity by 2020). Furthermore, uncertainty changes over time, either simply by acquiring more experience or through proactive measures to increase knowledge (eg, R&D). And further, some uncertainty is managed automatically by individuals and organizations seeking to reduce risk exposure (eg, with flood insurance). The bottom line is how to manage the risks of climate change in this complex and evolving environment? Insurance, financial markets, individual action and public policy can and should work in tandem to deal with this uncertainty. This talk provides a perspective on managing risk associated with climate change.

Related Themes:

Entrepreneurship Mini-Series, part II: Recent Stanford Graduates in Energy Start-Ups

Max Kelman, Manager of Materials & Print Development at Innovalight, Inc./DuPont; Jacob Woodruff, Senior Scientist at SunPower Corporation

Monday, March 11, 2013 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Maxim Kelman and Jacob Woodruff are relatively recent Stanford graduates in physical science and engineering who have worked successfully in solar energy-related start-ups. Kelman and Woodruff will describe the evolution of their careers to date, lessons learned about the start-up world and how it differs from academic and larger corporate workplaces. This will include the implementation of research findings into pilot and manufacturing lines with accelerated development timelines, and what it is like to work in the early stages versus later stages after reorganization and introduction of new management. Personality traits that may be useful among start-up employees will also be discussed.

Related Themes:

Sustainable Materials: With Both Eyes Open

Julian Allwood, Cambridge University, Low Carbon Materials Processing Group

Monday, March 4, 2013 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

One third of the world's carbon emissions are emitted by industry. Most industrial emissions relate to producing materials. Steel, cement, plastic, paper and aluminium are the most important contributors. The industries that make materials are energy-intensive, so they have always been motivated to be efficient and have now reached a fantastic level of performance.

However, the world's demand for materials is growing, and likely to double by 2050. By default, industrial emissions will also double, unless we do something differently. This talk sets out an agenda for making a big difference to global emissions by requiring less new material. Based on a five-year project with eight researchers and a consortium of 20 large industrial partners, we have gathered evidence on six material efficiency options which allow us to provide the same final services (such as housing or transport) with significantly less material. The talk will present a series of case studies to demonstrate how these strategies can be applied in practice, and explore the actions by government, businesses and consumers that would bring them about.

Related Themes:

Entrepreneurship Mini-series, part I: Challenges in Founding a New Energy Technology Company

Brian Hardin and Craig Peters, Co-Founders of PlantPV; Howard Turner, CTO of Kinestral Technologies

Monday, January 28, 2013 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Brian Hardin Craig Peters Howard Turner

Brian Hardin and Craig Peters (PlantPV) and Howard Turner (Kinestral) will discuss some of the important challenges that arise in founding a new energy technology company. Topics include both the tactical aspects of starting up a new venture, and more strategic considerations of entering an energy market with a technology developed using Silicon Valley venture capital funding. Speakers will explore key drivers, aside from interesting science, for selecting the technology space in which to start a company. They will also describe ways in which students may prepare themselves for future start-ups while still in school.

Related Themes:

Grid Flexibility and Research Challenges to Enhance the Integration of Variable Renewable Energy Sources

Mark O'Malley, Electrical Engineering Dept., University College Dublin

Monday, January 14, 2013 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Grid flexibility is a characteristic that is proposed to help the integration of variable renewable energy resources. However it has proven very difficult to quantify and this has spurred intense research efforts over the past few years. There are many sources, sinks and enablers for flexibility in the grid and these are all subject to numerous research challenges. Flexibility will be introduced, defined and a number of methods to quantify it will be described. This will be followed by an overview of research into unlocking flexibility in the power system e.g. demand side participation and power system operational strategies. There are potential hidden costs of flexibility and some of these will be highlighted, for example thermal plant cycling, and mitigation measures to reduce these will be formulated. Concluding remarks will try to give insights into how a future grid with very high penetrations of variable renewable energy may look like.

Related Themes:

The Era of Mainstream Clean Energy: Solar Rising

Arno Harris, CEO & Chairman, Recurrent Energy; Board Chair, Solar Energy Industry Association; Director, Advanced Energy Economy

Monday, January 7, 2013 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

Despite recent political attacks and negative headlines, the renewable energy and the solar industries emerge from 2012 ready to play a significant part in mainstream energy markets. Industry data reflects an increasing role for renewables as the fastest growing new source of electricity. It is now all but inevitable that our energy future will feature some combination of natural gas, wind, and solar. In this new era of mainstream clean energy, energy policy and industry action will determine what this future looks like. Will we end up with a gas-centric generating fleet with wind and solar around the edges? Or will we prioritize wind and solar with gas in a supporting role? What steps can we take to ensure renewables remain a central priority?


Related Themes:

Renewable Electricity Futures

Doug Arent, Executive Director, Joint Institute for Strategic Energy Analysis at NREL

Monday, November 26, 2012 | 04:15 PM - 05:15 PM | NVIDIA Auditorium, Jen-Hsun Huang Engineering Center | Free and Open to All

The Renewable Electricity Futures Study is  an initial investigation of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States over the next several decades. This study explores the implications and challenges of very high renewable electricity generation levels--from 30% up to 90%, focusing on 80%, of all U.S. electricity generation from renewable technologies--in 2050.

At such high levels of renewable electricity penetration, the unique characteristics of some renewable resources, specifically geographical distribution and variability and uncertainty in output, pose challenges to the operability of the nation's electric system. The study focuses on key technical implications of this environment from a national perspective, exploring whether the U.S. power system can supply electricity to meet customer demand on an hourly basis with high levels of renewable electricity, including variable wind and solar generation. The study also identifies some of the potential economic, environmental, and social implications of deploying and integrating high levels of renewable electricity in the United States.

Related Themes:
Syndicate content